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Abstract

Olive fruit fly trap measurements are used as one of the indicators for olive grove

infestation, and therefore, as a consultation tool on spraying parameters. In this

paper, machine learning techniques are used to predict the next olive fruit fly

trap measurement, given input knowledge of previous trap measurements as well

as an attribute that acts as a correlation model between the temperature and the

development of a pest’s population, known as the Degree Day model. This is the

first time the Degree Day model is utilized as input in classification algorithms

for the prediction of olive fruit fly trap measurements. Various classification

algorithms are employed and applied to different environmental settings, in

extensive comparative experiments, in order to detect the impact of the latter

on olive fruit fly population prediction.

Keywords: olive fruit fly, machine learning, population prediction,

classification, Näıve Bayes, Nearest Neighbors, Decision trees, Random forests,

Support Vector Machines, Neural Networks

1. Introduction

The olive fruit fly is a pest that has been recorded to infest solely the olive

fruit since at least the third century BC [2]. Such infestation causes great

IThis work is an extension of [1]
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damage to the production of both olive oil and table olives [3] in many olive oil

producing countries, including Greece. The olive fruit fly is active during the5

summer and reaches succesive population peaks during autumn, while during

the winter and in the first months of spring it hibernates, until environmental

conditions are favorable for it to re-emerge [2].

The population growth of the olive fruit fly and, by extension, the level of

infestation of an olive grove are affected by various environmental factors. A10

short non-exhausting list of these factors can be summarized to: temperature,

humidity, fruit bearing, olive grove orientation, olive grove variety, spatial diffu-

sion, interaction between neighboring micro-climates [4, 5, 6]. The net result of

all these factors is to introduce an spatiotemporal stochasticity in the evolution

of olive fruit fly population. While an earlier model proposed by Avlonitis et al.15

[7] indeed addressed some of the aforementioned complex factors, such as spatial

evolution of olive fruit fly, the robust modeling of spatiotemporal evolution can

only be achieved by means of the stochastic generalization of the well known

logistic equation for the olive fruit fly population, as shown in Equation 1

∂p

∂t
= βp(1− p) + c

∂2p

∂x2
+ g(p)δp (1)

where p is the population density, β is the rate of increase, c∂
2·p

∂x2 is the20

diffusion term in space and g(p) · δp models the spatiotemporal stochasticity,

g(p) being the corresponding noise amplitude. Within this context, the induced

randomness in the time and space of the olive fruit fly outbreak emerges as one

of the most crucial product parameters1.

Population control of the olive fruit fly can be achieved through spraying25

of the olive trees, either with localized bait or universally [2, 9] at an olive

grove. However, in order for the spraying to have effect, it has to be applied

when conditions are appropriate. Two factors indicate when spraying should

commence [9]: (a) the ripeness level of the olive fruit, as the fruit needs to be

1For a recent stochastic model predicting population outbreaks the interested reader is

referred to [8]
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ripe in order for it to be susceptible to the olive fruit fly and (b) the population30

of the fly, i.e. when a certain population threshold (recorded via sampling) is

exceeded. Sampling is achieved through McPhail traps or yellow sticky traps

[2, 9]. The infestation threshold is usually set to seven olive fruit flies per trap

per week during the summer while decreased to five olive fruit flies per trap per

week during autumn [9]. In both cases each trap covers an area of 77.000m2 or35

approximately 1.000 olive trees.

The aim of this paper is to predict future olive fruit fly trap measurements,

and by extension olive fruit fly infestations/outbreaks, using machine learning

algorithms.

1.1. Motivation & Contribution40

The effect of insects that produce harm to humans’ concerns and especially

on crops, are of great significance. Pests infect and feed from the fruits and

grains of agricultural goods, thus greatly reducing their value. In turn this

leads to loss of both alimentary raw material as well as invested funds [10, 11].

Moreover, existing research on olive fruit fly has focused mainly on aspects45

such as the biology, ecology, management, and impact on olive production. On

the other hand, infestation prediction has yet to receive significant attention,

despite the wide availability of pests’ and contextual data from olive groves as

well as the positive effects such a prediction could bring on treating olive fruit

fly infestations and thus ameliorating the olive fruit production.50

To address these requirements, our previous work [1] presented extensive ex-

perimentation with various classification algorithms, on different environmental

settings, in order to detect the impact of environmental parameters on olive

fruit fly population prediction. Therein, the proposed feature vector consisted

of environmental parameters, specifically temperature and information about55

previous trap measurements. Nevertheless, the feature vector utilized in [1] was

somewhat generic: it did not take into account the specifics of the olive fruit

fly’s bio-cycle, but rather incorporated parameters that affect it. Moreover,

while the experimental evaluation was indeed promising, the distribution of the
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target class in the data presented a high imbalance, leading to poor performance60

in the prediction of the minority class.

This work significantly extends [1] by

1. Proposing a new feature that closely addresses requirements of the olive

fruit fly. We incorporated the Degree Day model as feature, which corre-

lates the environmental temperature with development of an organism.65

2. Conducting and presenting promising experimental results with the afore-

mentioned new feature. We experimented on three feature sets, where each

feature set varied in the number of attributes, having as a constant at-

tribute the aforementioned feature. Finally, the algorithms utilized therein

were applied on four different experimentation methods.70

3. Employing various means to address the class imbalance problem. Specif-

ically, we utilized synthetic oversampling to the dataset via the SMOTE

(Synthetic Minority Oversampling Technique) technique. Furthermore,

we experimented with meta-learners. Finally, the three-fold bin of the

trap measurement related attributes was reduced to two by merging two75

bins that ultimately served the same purpose.

The rest of the paper is organised as follows: Section 2 presents background

information and related work, while Section 3 discuses the methodology utilized

for the collection of data from environmental sensors and olive fruit fly traps, the

features selected and extracted from the raw data as well as the class imbalance80

problem identified. Next, Section 4 details with the experimental setup and the

experimental results obtained. Finally, the paper is concluded in Section 5.

2. Background & Related research

This Section details necessary background information on machine learn-

ing methods as well as related existing research on olive fruit fly infestation85

prediction.
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2.1. Machine Learning Algorithms

A number of classification algorithms exist that are suitable for the purposes

of experimentation on the theme of this work. As classification approaches

to olive fruit fly infestation prediction are extremely limited in number in the90

literature, the choice of classification algorithms has to a large extent been based

on exploratory criteria, with the aim to cover varying learner families, including

meta-learning. The following machine learning algorithms were used:

• J48 [12], a decision tree induction algorithm and it is a version of C4.5,

an earlier algorithm developed by J. Ross Quinlan [13].95

• Sequential Minimal Optimization or SMO [14], an ameliorated algorithm

100 for training support vector machines.

• Näıve Bayes [12] , a probabilistic classifier based on the assumption of

conditional independence [15].

• Random Forest [16], a meta-learning classification algorithm that runs100

iteratively.

• AdaBoost [17], another meta-learning algorithm.

• Ibk [12], an implementation of the k-nearest neighbor algorithm.

• Multilayer Perceptron, an artificial neural network [18].

Very often machine learning algorithms face the problem of over-fitting, i.e.105

they cope optimally when evaluated on the training data, but poorly on new

unseen test data. Usually, the more complicated the model generated by a

learning algorithm, the more prone it is to over-fitting. In our experiments, we

dealt with the problem of over-fitting by

• applying post-pruning, i.e. sub-tree raising, to the trees generated by the110

tree-based classifiers (J48 and RandomForest),

• employing a low-complexity polynomial function in the Support Vector

Machine kernel, i.e. a first-degree polynomial,
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• choosing a low-complexity perceptron structure, that includes only one

hidden layer, and investigating its performance with varying numbers of115

nodes, starting from very low-complexity of only one node, to 15 nodes,

• investigating other neural network structures of low complexity with vary-

ing number of inputs and hidden layers, thus of varying complexity.

As far as the problem of outliers is concerned, among all the attributes in

our proposed feature vector, only one attribute had numeric values. After anal-120

ysis of the numeric attribute no instances were found with an unusual/strongly

deviating value. Therefore our feature vector space included no significant cases

of outliers’ instances.

2.2. State-of-the-art Research on Fruit Fly Infestation Prediction

Related research indicates numerous attempts to simulate the population125

dynamics of the olive fruit fly as well as the prediction of outbreaks. Comins

& Fletcher [19] developed a simulation model which predicted the phenology

and dynamics of the olive fruit fly using field data. Pommois et al. [20] and

Bruno et al. [21] used a cellular automata model to simulate the spatiotemporal

infestation of olive groves by the olive fruit fly. Gilioli & Pasquali [22] used an130

individual-based model to model the development of the olive fruit fly numeri-

cally. Avlonitis et al. [7] proposed an evolution equation based on the dispersion

of the olive fruit fly to express population outbreaks. In [23], Gutierrez et al. de-

veloped a weather-driven physiologically-based demographic model to simulate

how the population dynamics and phenology of the olive fruit and olive fruit fly135

are affected by climate change. Garcia Adeva et al. [24, 25] developed a web-

based simulation model to simulate the spatial and temporal development of

Bactrocera fruit flies outbreaks, with the use of Finite State Machines. Finally,

Voulgaris et al. [26] developed an information system capable of simulating the

population dynamics of the olive fruit fly as well as its spatial dispersion in a140

real field, resulting in predicting population outbreaks. The system proposed in

[26] has since been further modified and optimized [27, 28].
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In [29], del Sagrado et al. proposed the prediction of olive fruit fly infestation

using information about olive tree’s health as well as trap measurements. The

notion of crop’s health, as described therein, includes measurements that address145

all three stages of the tasks associated with crops: inauguration, monitoring and

conclusion of the crop. Their research utilized classification trees and Bayesian

networks for the identification of predictors indicating plant health treatment

requirements in relation to olive fruit fly infestation. The results obtain therein

indicated that the classification tree approach performed favorably to Bayesian150

networks in terms of simplicity, success rate and sensitivity, though with poor

performance on specificity. Moreover, del Sagrado et al. attempted complexity

reduction by use of a subset of the available variables to uncertain results. The

approach proposed herein differentiates from [29] by proposing a feature vector

that is based on both trap measurements as well as environmental factors, such155

as temperature, instead of the olive tree health.

In somewhat partially related research directions, machine learning tech-

niques have been used to detect oil spills on the surface of the sea by scanning

radar images [30], to automatically identify species by sound [31] and to mon-

itor flood protection systems [32]. Machine learning techniques have also been160

applied in numerous agriculture processes such as the prediction of when a cow

should be culled in a dairy herd [33], the estimation of soil moisture [34] and

the estimation of a cow’s oestrus [35].

Our proposal has the following advantages and disadvantages in regard to

the work done in [29].165

Advantages:

• The use of the Degree Day (DD) model as a feature attribute. DD (also

known as Growing Degree Days) is a correlation model between temper-

ature and the development, and more generally the activity, of a pest

population [36]. This model calculates the heat accumulated by an or-170

ganism during the day, between lower and upper thresholds. By using

this model, one can determine, for instance, the amount of heat and by
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extension the total time required for an organism to transform from one

development stage to the other.

• The proposed feature vector could be applied for the prediction of infes-175

tation of other pests other than the olive fruit fly. Since, as described

above, the DD attribute correlates the development of an organism with

the temperature of the environment. Therefore, DD is used in agriculture

to predict certain events, such as to predict plant stages [37] or to predict

insect development and by extension pest activity [38].180

• Computing the DD units is a standard methodology and various methods

can be employed [36, 39]. Furthermore, it is a quantifying characteris-

tic and the process of computation can be automated with the use of a

computer algorithm. In contrast, in [29] the use of experts is required to

assess the crops health based on the sample being collected. In the case185

that many experts are employed, there is a chance that a difference of

opinion may occur.

Disadvantage: Determining the starting date of DD accumulation can be a

cumbersome task. In the case of the olive fruit fly, the starting period is when

the first eggs are deposed inside the olive fruits. As such, intensive monitoring190

of the olive grove is required to determine when the first eggs were laid. For

instance, in Corfu, Greece under favorable environmental conditions the olive

fruit fly begins laying eggs between end of June and start of July. However, there

have been cases where due to hot weather oviposition began at late August.

Therefore, determining the starting date of accumulation can span from a few195

days to months.

Concluding, our proposed feature vector incorporates an attribute that closely

addresses the biological cycle of the olive fruit fly, which can be easily calculated

either manually or automatically. Furthermore, the proposed feature vector can

be applied on other pests and insects, in order to predict possible infestation200

outbreaks.
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The main contribution of our proposal in regard to related proposals [30] is

the utilization of the Degree Day model, as input in classification algorithms for

the prediction of olive fruit fly trap measurements. The use of the aforemen-

tioned model with machine learning techniques for this specific problem, to our205

knowledge, is attempted for the first time.

3. Data Collection

3.1. Environmental Data

The data used in the experiments presented in this work were collected from

environmental sensors and olive fruit fly traps that were installed at 16 locations210

on the north-western side of the island of Corfu, Greece. Readings from the olive

fruit fly traps showed the total number of olive fruit flies caught by in the trap.

Each reading was conducted, at all traps’ locations, every five days for the

period from June 10th, 2015 to September 29th, 2015 and from July 8th, 2016

to October 1st, 2016. The sensors at each location logged temperature values at215

a 15 minutes interval, while a few of these also logged relative humidity values.

3.2. Feature Selection

In order to perform classification experiments, the aforementioned environ-

mental data were transformed into the following set of numeric attributes (in

order to represent readings as feature-value learning vectors):220

• Mean temperature of the last five days before next trap reading

• Average maximum temperature of the last five days before next trap read-

ing

• Average minimum temperature of the last five days before next trap read-

ing225

• Day 1 Mean Temperature

• Day 1 Maximum Temperature
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• Day 1 Minimum Temperature

• Day 2 Mean Temperature

• Day 2 Maximum Temperature230

• Day 2 Minimum Temperature

• Day 3 Mean Temperature

• Day 3 Maximum Temperature

• Day 3 Minimum Temperature

• Day 4 Mean Temperature235

• Day 4 Maximum Temperature

• Day 4 Minimum Temperature

• Day 5 Mean Temperature

• Day 5 Maximum Temperature

• Day 5 Minimum Temperature240

Apart from the environmental attributes the trap’s measurement of the last

reading (number of flies caught) attribute, was also used as input.

Finally, another attribute to be included to the feature vector was the De-

gree Days (DD). Various methods can be employed to calculate the DD such

as the max-min, “saw-tooth” and double sine curve methods, as described by245

Wilson & Barnett [36]. However, the most common are the single sine curve

and mean temperature methods [39]. For the calculation of DD in this work,

we employed the following calculation method originally presented in [27], as

shown in Equation 2

DD = (t− TL) ∗ (1−
1

1 + e−10∗(t−TU )
) (2)
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where t is the mean day’s temperature while TL and TU are the lower and250

upper, respectively, temperature thresholds for the development of the olive

fruit fly.

According to the authors of [40, 41], for the olive’s fruit fly eggs to hatch

49.77 DD are required while to reach the adult age, the olive fruit fly requires

379.02 DD counting from the day the egg was deposited on the olive fruit. The255

intuition for the use of this composite attribute is that, having DD into the

feature vector, provided an assumption as to the date of the eggs’ deposit, prior

to the trap measurement. This, as is also claimed in the literature, is expected

to support the prediction of an outbreak.

3.3. Feature Vector Extraction260

The process of extracting the attributes for the feature vectors from the

sensor data was automated by use of a script. The script was written in Python

and automatically computed the mean, mean maximum and mean minimum

temperature for the five day period before the next trap reading, as well as the

mean, maximum and minimum temperatures for each day in the aforementioned265

five day period. The script exported all vectors in a CSV (Comma Separated

Values) file for further processing. Finally trap readings were added manually

at each corresponding vector instance.

The temperature-related attributes, initially numeric, were discretized into

the following three bins:270

• < 15, temperature is lower than 15 oC,

• 15 to 32, temperature is between 15 oC and 32 oC,

• > 32, temperature is greater than 32 oC.

The discretization of the temperature values was based on the temperature

range (between 15 oC and 32 oC [42]), in which the olive fruit fly is active. In275

cases that the temperature of the environment is below the lower or exceeds

the upper threshold, then the olive fruit fly is motionless due to cold or heat.
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Accordingly, herein we assume that outside the optimal temperature range of

the olive fruit fly, the traps will not capture any olive fruit flies.

Trap reading related attributes have also been discretized into the following280

bins:

• 0 to 4, none or up to 4 olive fruit flies caught in the trap,

• ≥ 5, greater than or equal to five olive fruit flies caught in the trap.

In [1], the quantization of traps’ measurements was ternary (“0 to 4”, “5 to

6” and “≥ 7”) based on theoretical analysis, i.e. the infestation threshold de-285

pending on the season the measurements are made. Specifically, in the summer

months the infestation threshold was set to seven olive fruit flies per trap per

week. On the other hand, from September onwards the infestation threshold

was decreased to five olive fruit flies per trap per week, due to cooler weather

[9]. Therefore, although the last bin value would always indicate infestation,290

the second bin value would be depended on the season.

3.4. The Class Imbalance Problem

Field trap measurements analysis indicated low frequency of occurrence for

the “5 to 6” bin on accumulated two years’ of collected data.

This leads to an overrepresentation of the first and last bins in the data,295

compared to the second bin. Prediction of instances of the minority class suffers,

due to their sparseness.

The problem of class imbalance has been dealt with in previous work in

different ways. Random oversampling (random replication of minority exam-

ples) and random undersampling (random elimination of majority examples)300

have been utilized to balance the class distribution [43]. According to several

researchers, random oversampling may lead to ovefitting, while random under-

sampling entails the risk of removing potentially useful data, i.e. data that is

crucial for the induction process [44]. Therefore focused resampling methods

have been proposed. Focused oversampling techniques vary from replicating305
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only minority examples that appear in the borderline between the two classes

[43], to creating new minority class examples by interpolating between exist-

ing minority examples [45] and approaches that combine oversampling with

data cleaning (removing examples of both classes) [46]. Focused undersampling

techniques vary from removing negative examples that participate in Tomek310

links [47], to finding a consistent subset of examples using the condensed near-

est neighbor rule [48], and to the combination of these two approaches called

one-sided sampling [49]. Another way to address the class imbalance issue is

cost-sensitive learning, i.e. the implementation of classifiers that do not treat

all misclassification costs as equal [50, 51]. Finally, metalearning [52, 53] has315

also been proposed to deal with imbalanced datasets, as it forces the learner to

focus on hard examples.

In the present work varying means have been employed to address the im-

balance issue:

• Synthetic oversampling is applied to the dataset using the SMOTE tech-320

nique [45]. Oversampling is chosen to undersampling due to the lim-

ited number of available examples. SMOTE (Synthetic Minority Over-

sampling TEchnique) creates new synthetic examples from a minority

class sample, by considering its nearest neighbors and linearly combin-

ing the sample with each neighbor. SMOTE has been used extensively325

for detecting network intrusion [54], for detecting sentence boundaries in

speech [55], for species distribution prediction [56], for detecting breast

cancer [57], as well as in bioinformatics applications [58, 59, 60, 61, 62].

• Metalearning is applied to ‘force’ the learner to mind the erroneously

classified instances. Boosting as well as the RandomForest metalearning330

schemata have been experimented with.

• The initial three-fold threshold of the trap measurements is relaxed, given

the aforementioned dual threshold on the infestation based on the ambient

temperature, both bins “5 to 6” and “≥ 7” served qualitatively the same
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purpose. Thus, bins “5 to 6” and “≥ 7” were aggregated to the “≥ 5”335

super-class bin, while infestation indication was also aggregated to the

same bin.

4. Performance Evaluation

In support of the efficiency of the proposed feature vector and the examined

machine learning algorithms, this section presents a number of experiments that340

have been performed. A concise description of the experimentation platform and

data sets is also given followed by a performance analysis.

4.1. Experimental Setup

Since the proposed machine learning approach, for the specific problem de-

scribed herein, is done for the first time, the selection of the architecture of345

the proposed models was purely exploratory. Therefore, an optimal architec-

ture cannot be known beforehand. The proposed models were selected based

on their ability to satisfactorily tackle the over-fitting problem, the type of fea-

ture attributes and the small number of training instances that we had in our

disposal.350

201 training instances were supplied. Due to the small size of the training

data, no test set could be supplied for the validation of the results. Therefore

the 10-fold cross-validation method was used. The original sample was ran-

domly partitioned into ten sub-samples. One out of ten sub-samples is kept

as validation data for testing the model, and the remaining nine sub-samples355

are used as training data. The cross-validation process was then repeated ten

times, with each of the ten sub-samples being used only once as validation data

while results were averaged across the ten experiments. The feature vector was

augmented to include another attribute, denoting the next trap reading, that

was used as the classification class.360

The WEKA machine learning workbench2 was used for running the classifi-

2http://www.cs.waikato.ac.nz/ml/weka/
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cation experiments. In the sequel, Tables 1,2,3,4,5,6 and 7 present the parameter

values selected for each of the classification algorithms selected for experimen-

tation. In the k-nearest neighbor algorithm, the number of nearest neighbors

ranged from 1 to 33 neighbors, while only odd values were selected, to ensure365

that ties are avoided, and majority voting is feasible. In the Multilayer Per-

ceptron, experiments were conducted for one hidden layer with the number of

nodes ranging from 1 to 10.

In some cases, the SMOTE technique [45] was utilized in order to resample

the dataset whenever the training set included a minority class. Accordingly,370

four methods are examined in the sequel:

Method 1 The results of our previous work [1].

Method 2 The feature vector of our previous work [1] was utilized with the

SMOTE technique on the data of 2015 for training while the original data

of 2016 were used as a test set.375

Method 3 The proposed feature vector was used, with the SMOTE technique

utilized on the data of 2015 for training while the data of 2016 were used

as evaluation set.

Method 4 The feature vector utilized in Method 3, with the aggregation of

the infestation bins from tertiary in our previous work to binary herein,380

from both the data from 2015 and 2016

For the classification problem using Neural Networks, we utilized a two-

layered feed-forward network with sigmoid hidden and output neurons with

varying neurons at the hidden layer in order to test the effect of the neuron

and size. The experimentation also included the division of the dataset into385

training, validation of generality, and testing subsets in different sizes. In all

experiments with the NN presented herein evaluation of the performance was

only based on the testing subset. The learning function used was the scaled con-

jugate gradient back-propagation function while the performance function was

15



Binary Splits No

Confidence Factor 0.25

Minimum Instances per Leaf 2

Reduced Error Pruning No

Subtree raising Yes

Pruned Yes

Laplace smoothing No

Table 1: J48 parameter values.

Complexity parameter 1.0

Round-off error 1.0E-12

Filter Type Normalize training data

Kernel PolyKernel

Random seed for cross validation 1

Tolerance parameter 0.001

Table 2: SMO parameter values.

Use kernel estimator No

Use supervised discretization No

Table 3: Näıve Bayes parameter values.

Maximum Depth Unlimited

Number of Attributes 0

Number of trees to be generated 100

Seed 1

Table 4: RandomForest parameter values.

the Mean Squared Error (MSE), between the outputs and targets, performance390

function as well as the absolute percentage of erroneous classifications. Each

testing of the network was repeated 10 times and both MSE and the percentage

of erroneous classifications were averaged in order to generalize results. More-
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Classifier SMO

Number of Iterations 10

Seed 1

Use resampling No

Weight Threshold 100

Table 5: AdaBoost parameter values.

Cross Validate No

Distance Weighting No

Use of Mean Squared Error No

Nearest Neighbor Search Algorithm LinearNNSearch

Window Size 0

Table 6: IBk parameter values.

Decrease learning rate No

Hidden layers 1

Learning rate 0.3

Momentum 0.2

Nominal to binary filter Yes

Normalize attributes Yes

Normalize numeric class Yes

Reset Yes

Seed 0

Training time 500

Validation set size 0

Validation threshold 20

Table 7: Multilayer Perceptron parameter values.

over, in order to present a composite metric of efficiency including both MSE

and the percentage of erroneous classifications, the equally weighted product of395

both these metrics was also utilized. In this experimentation set, the following
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Figure 1: f1 score for all classification algorithms for each classification class.

3 feature-sets were examined:

2 features Solely the values of DD as well as the previous trap measurements.

20 features All discretized features, DD and the previous trap measurements.

19 features All discretized features and the previous trap measurements (i.e.400

similar to “20 features” but without the DD).

4.2. Experimental Results

Figure 1 displays the classification results of all the aforementioned machine

learning algorithms (Method 1) for each classification class. In this case, the

feature vector consisted of 20 attributes, 18 of which were temperature related405

while the last two were trap related. The class “5 to 6” included too little

data to receive useful results. The results of J48, SMO, AdaBoostM1, IBk

and multilayer perceptron are comparable for the class “0 to 4”, while for the

class “≥ 7” SMO produced the best results. On the other hand, Näıve Bayes

produces the worst results in comparison with the other algorithms, with a410

significant decrease in all classes.
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Figure 2: f1 score for all classification algorithms for each classification class (SMOTE on

train data, train:2015, test:2016).

In the next set of experiments, the feature vector of our previous work [1]

was utilized with the SMOTE technique on the data of 2015 for training while

the original data of 2016 were used as a test set (Method 2). Our aim in this

experiment was to examine if balancing the training set of 2015 and evaluating415

them against the new data collected from 2016 would produce better results.

Figure 2 presents the f1 score that all classification algorithms achieved for each

classification class. J48, SMO, AdaBoostM1, IBk and multilayer perceptron

produce comparable performance for the class “≥ 7” while RandomForest indi-

cates a significantly lower performance. In class “0 to 4”, J48, RandomForest420

and AdaBoostM1 produce comparable performance with SMO little lower and

IBk and multilayer perceptron significantly lower performance. “5 to 6” class’

results are distinctively lower than the other two classes with SMO, IBk and the

multilayer perceptron as the top results. Similarly, Figure 3 presents the preci-

sion, recall and f1 score that the IBk algorithm achieved. The best f1 score was425

achieved for 5 nearest neighbors. Finally, 4 presents the precision, recall and f1

score that the multilayer perceptron, with 1 hidden layer, algorithm achieved.

The best f1 score was achieved for 2 nodes.

Following the paradigm of the previous experimentation set, in the next

experimentation set the proposed feature vector was used, while the SMOTE430
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Figure 3: Precision, Recall and f1 score for Ibk classification algorithm (SMOTE on train

data, train:2015, test:2016).

Figure 4: Precision, Recall and f1 score for multilayer perceptron classification algorithm

(SMOTE on train data, train:2015, test:2016).
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technique was applied on both the data from 2015 and 2016 in order to balance

the classification class values (Method 3). The feature vector of this experiment

set was reduced to three attributes, namelyDD, Previous Reading and Reading,

since DD is derived from temperature, we decided to remove all temperature

related attributes. Thus, in this experiment, we examined if applying the same435

procedure as in Method 2 on the new feature vector would yield better results.

Figure 5 presents the f1 score the J48, RandomForest, SMO, Näıve Bayes,

AdaBoostM1(SMO), Ibk and multilayer perceptron algorithms achieved. For

class “≥ 7” SMO and the multilayer perceptron present the best performance

with J48, AdaBoostM1(SMO) and IBk following suite at lower but comparable440

performances while RandomForest and Näıve Bayes presenting the lowest. In

class “0 to 4” the best performance is achieved by AdaBoostM1(SMO), with

J48, SMO, Näıve Bayes, IBk and multilayer perceptron following, while Ran-

domForest showing the worst performance. Again, class “5 to 6” included too

little data to receive useful results, despite the slightly increased performance445

of the Näıve Bayes algorithm.

Figure 6 presents the precision, recall and f1 score that the Ibk algorithm

achieved. The best f1 score was achieved for 3 nearest neighbors. Finally, 7

presents the precision, recall and f1 score that the multilayer perceptron, with

1 hidden layer, algorithm achieved. The best f1 score was achieved for 1 node.450

The next experimentation set utilized the proposed feature vector, with the

aggregation of the infestation bins from tertiary in our previous work to binary

herein, from both the data from 2015 and 2016 (Method 4). This experiment is

another attempt to balance the classification class by merging two class values

into one. Figure 8 presents the f1 score that the J48, RandomForest, SMO, Näıve455

Bayes, IBk and multilayer perceptron algorithms achieved for each classification

class. Although not significantly better, the IBk performed better than the rest

at the f1 score with multilayer perceptron being very close in both “0 to 4” and

“≥ 5” classes. Similarly, J48, SMO and Näıve Bayes presented slightly lower but

closely matching performances, while RandomForest achieved the worst, in both460

classes. Figure 9 presents the precision, recall and f1 score that the Ibk algorithm
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achieved. The best f1 score was achieved for 13 nearest neighbors. Finally, 7

presents the precision, recall and f1 score that the multilayer perceptron, with 1

hidden layer, algorithm achieved. The best f1 score was achieved for 10 nodes.

The next experiment focuses at the comparison the feature vector of our pre-465

vious work [1] with the one proposed herein provide for each Method when the

best performing algorithm is selected. Figure 11 depicts the collective results.

The higher performance of Method 1 is misleading, as this Method dealt with

a highly imbalanced dataset, and the reported metrics constitute the average

values over all class labels. In truth, performance on the minority class label470

alone (which is basically the class of interest) is much lower. Methods 2, 3 and

4 address a balanced dataset, and though the average performance values over

all class labels are lower, performance on the class of interest is significantly

higher.

The final experimentation set focuses on the use of Neural Networks for the475

classification of the data collected (including environmental, previous class as

well as composite, such as DD) for the prediction of the class of olive fruit flies

within traps. The intuition of this experimentation set is twofold: initially (1)

to identify the capability of the utilized Neural Network to accurately predict
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Figure 10: Precision, Recall and f1 score for multilayer perceptron classification algorithm

(aggregated infestation bins).

Figure 11: Precision, Recall and f1 score comparison between best results of each Method.
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the number of collected pests given the available input data in comparison to480

the other Machine Learning techniques utilized herein, as well as (2) to verify

the contribution of various feature vector sets to the discriminating capability

of the NN classification.

In order to present a cumulative result of the NN technique for all feature-

sets, Figure 12 presents solely the composite metric of the equally weighted485

product of both MSE and the percentage of erroneous classifications. The x-

axis is not continuous and designates the parameters used for each value of the

methods’ experimentation. These parameteres are only shown in detail in Table

8 for the best result of each feature-set.

Feature-set hidden layers Ratios Composite metric % of erroneous classifications MSE

2 features 1 50-40-10 0.12198 24.98% 0.16258

20 features 5 40-50-10 0.12463 23.48% 0.16288

19 features 1 10-80-10 0.12859 28.48% 0.17981

Table 8: Detailed parameters for the best composite metric result for all feature-sets.

The best result is achieved by the “2 feature”-set with “20 feature”-set and490

“19 feature”-set following. Despite the very small variation of the composite

metric, the information of Table 8 indicates the clear superiority of the inclusion

of DD within the feature set as lack increases significantly both elements of

the composite metric, while when available, both MSE and the percentage of

erroneous classifications are highly comparable.495

Moreover, the percentage of correct classifications, that represents the preci-

sion of the NN methodology, is highly comparable to the precision achieved by

the other Machine Learning techniques utilized herein, as shown in Figure 11.

5. Conclusions

In this work, supervised machine learning is used to predict future olive fruit500

fly population outbreaks. The proposed feature vector consists of environmen-

tal parameters, specifically temperature, information about previous population
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data and more importantly the development stage according to the correspond-

ing DD model. Results produced by the conducted experiments are promising

while indicating the superiority of the performance given the proposed addi-505

tional attribute of the development stage to the feature vector.

This can be understood in the basis of Equation 2: it can be seen that the

presence of the temperature thresholds values, TL, TU may result to a dramatic

change on the development stages of the olive fruit fly population even if only

small differences of environmental temperatures are present. As a result, a ma-510

chine learning algorithm based only on the absolute values of the environmental

temperatures will not be able to correctly predict olive fruit fly outbreaks.

On the other hand, future research should take into account more environ-

mental parameters such as relative humidity, the amount of light the olive fruit

flies are exposed to and diffusion characteristics. This can be understood in the515

basis of Equation 1 where the presence of the diffusion term is crucial for the

robust modeling of olive fruit fly population in time and space. Indeed, humid-

ity, luminance and fruit bearing percentage may drastically affect diffusion of

the olive fruit fly population within the olive grove.

Finally, the experiments described are planned to be conducted again on520

more training instances as measurement data accumulate. Providing more train-

ing instances to the machine learning algorithms should produce better results.
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